

NuFact15: XVII International Workshop on Neutrino Factories and Future Neutrino Facilities

Recent results from the OPERA experiment

Chiara Sirignano on behalf of the OPERA collaboration

Università degli Studi di Padova & INFN

CBPF Rio de Janeiro 10 – 15 August 2015

Outline

- ✓ Introduction
- ✓ The OPERA detector
- ✓ Data Analysis
- ✓ OPERA *latest news*

Discovery of ν_{τ} appearance in the CNGS neutrino beam with the OPERA experiment

N. Agafonova, A. Aleksandrov, A. Anokhina, S. Aoki, A. Ariga, T. Ariga, D. Bender, A. Bertolin,

[arXiv:1507.01417] submitted to PRL

Published for SISSA by 2 Springer

RECEIVED: March 9, 2015
REVISED: May 4, 2015
ACCEPTED: May 24, 2015
PUBLISHED: June 11, 2015

JHEP06 (2015) 069

Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

Introduction

- <u>Super-K (1998), MACRO and Soudan-2</u>: atmospheric neutrino anomaly explained as $v_{\mu} \rightarrow v_{\tau}$ oscillation
- K2K and MINOS (accelerator): confirmation of the Super-K v_{μ} disappearance signal

$$P(\nu_{\mu} \to \nu_{\tau}) \cong \sin^2(2\theta_{23})\cos^4(\theta_{13})\sin^2\left(\frac{1.27\Delta m_{32}^2 L(Km)}{E(GeV)}\right)$$

Opera was designed to confirm the oscillation searching the

$v_{ au}$ APPEARANCE SIGNAL

event-by-event basis in an artificial v_{μ} beam

Challenge

Detection of v_{τ} CC interaction by a full reconstruction of the primary interaction and observation of the τ lepton decay topologies.

Decay topology	B.R.
τ- → μ- ν _τ ν _μ	17.4%
$\tau^ \rightarrow$ $e^ v_{\tau}$ v_{ϵ}	17.8%
$\tau^ \rightarrow$ $h^ v_{\tau}$ $n(\pi^0)$	49.5%
$\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau} n(\pi^0)$	14.5%

Nuclear emulsions + Lead (ECC) "active target"

- 3D particle reconstruction
- Sub-micron spatial resolution

Oscillation Project with Emulsion tRacking Apparatus

Long baseline neutrino physics experiment

• **CNGS** quasi – pure wide band v_{μ} beam, <L> = 732 km, <E> = 17 GeV optimized to

maximize the number of v_{τ} CC interactions

v_{μ} (CC + NC)/year	~4700
ν _τ CC/year	~20
$(v_e + \overline{v}_e)/v_\mu CC$	0.87%
$\overline{\nu}_{\mu}$ / ν_{μ} CC	2.1%
v_{τ} prompt	negligible

LNGS - Gran Sasso National Lab

The OPERA collaboration

28 institutions - 140 physicists

Bari Bologna

LNF Frascati LNGS

Napoli

Padova

Roma Salerno

LAPP Annecy IPHC Strasbourg

LHEP Bern

IHE Brussels

Hamburg

IRB Zagreb

METU Ankara

Technion Haifa

with pinhole hand made camera

courtesy by Donato Di Ferdinando

Jinjiu

Image taken using OPERA nuclear emulsion film

Toho Kobe Nagoya

Aichi

NIhon

INR Moscow Moscow **SINP MSU Moscow** JINR Dubna

http://operaweb.lngs.infn.it

ECC target brick

57 emulsion films + 2 CS interface sheet Ref: NIM A556 (2006) 80-86

56 × 1 mm Pb (lead + 0.04 % Ca) plates *Ref: JINST 3 P07002 (2008)*

planes of scintillator strips) ~ 150.000 bricks in total.

1.25 kt mass

NUFact15 Rio de Janeiro

Muon spectrometer (Magnet+RPC+PT)

Brick Manipulator System

CS interface films scanning

10

Ref: JINST 3 P07005 (2008)

Interface emulsion films: high signal/noise ratio for event trigger and scanning time reduction

Position accuracy of the electronic predictions

Angular accuracy of the electronic predictions

Emulsion film scanning

EU: ESS (European Scanning System)

Japan: SUTS (Super Ultra Track Selector)

- Scanning speed/system: 20cm²/h
- Customized commercial optics and mechanics
- Asynchronous DAQ software

- Scanning speed/system: 75cm²/h
- High speed CCD camera (3 kHz),
 Piezo-controlled objective lens
- FPGA Hard-coded algorithms

Both systems have:

- ~ 0.3 μm spatial resolution
- ~ 2 mrad angular resolution
- ~ 95% detection efficiency on a single emulsion film

Interaction Vertex finding

Track follow-up film by film:

- alignment using cosmic ray tracks
- definition of the stopping point

Ref. JINST 4 (2009) P06020

Volume scanning (~2 cm³) around the stopping point

Location efficiency evaluation

The complete location procedure (electronic data followed by emulsion analysis) was simulated for efficiency evaluation.

The predictions for the τ signal and backgrounds are computed using the efficiencies derived from the observed 0μ -like (NC) and 1μ -like (CC) samples

Data-Monte Carlo comparison of the **location efficiency** as a function of the visible energy in the target scintillators

Decay search procedure

The IP evaluation is a crucial point in order to detect and reconstruct decay topologies

Each track is associated to the primary vertex only if

IP < 10 μm IP <
$$5 + 0.01 *ΔZ$$
 μm

$$\Delta Z < 500 \mu m$$

 $\Delta Z > 500 \mu m$

[Eur.Phys.J. C74 (2014) 2986]

IP of the tracks at the neutrino vertices

$\nu_{\mu} \rightarrow \nu_{\tau}$ background characterization

CC with charm production

(all channels)

If primary lepton is not identified and the daughter $\nu_{\mu,e}$ charge is not (or incorrectly) measured

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down", procedure and large angle scanning

[Eur.Phys.J. C74 (2014) 2986]

Hadronic interactions

Background for $\tau \to h$

FLUKA + pion test beam data

Reduced by large angle scanning and nuclear fragment search

[PTEP9 (2014) 093C01]

Large angle muon scattering

Background for $\tau \to \mu$

Measurements in the literature (Lead form factor), simulations and dedicated test-beams

Reduced to negligible level

[arXiv:1506.08759]

15

Data sample

5 years CNGS run

 $1.8 \cdot 10^{20}$ p.o.t. collected (80% of the design)

1.25 kton initial target mass (150 k bricks)

19505 neutrino interactions collected in the lead emulsion target

Year	Beam days	P.O.T. (10 ¹⁹)
2008	123	1.74
2009	155	3.53
2010	187	4.09
2011	243	4.75
2012	257	3.86
Total	965	17.97

Data analysis

17

Bricks are ordered according to their probability of containing the interaction vertex

2008-09 completed up to the 4th brick

2010-12 completed up to the 2nd brick

$u_{ au}$ gallery

Fifth v_t candidate

[arXiv:1507.01417] submitted to PRL

Fifth v_{τ} candidate

CS films scanning results

Fifth v_{τ} candidate

PARTICLE IDENTIFICATION

Parameter	Measured value	Selection Criteria
$\Delta\phi_{\tau H} (^{o})$	151±1	>90
$p_T^{miss}~({ m GeV/c})$	0.3 ± 0.1	<1
$\bar{\theta}_{kink} \text{ (mrad)}$	90 ± 2	>20
$z_{dec} (\mu m)$	634 ± 30	[44, 2600]
$p^{2ry} \; (\mathrm{GeV/c})$	11^{+14}_{-4}	>2
$p_T^{2ry}~({ m GeV/c})$	$1.0^{+1.2}_{-0.4}$	>0.6 (no γ attached)

Fifth v_{τ} candidate

$u_{ au}$ analysis results

Observed Data: 4 hadronic + 1 muonic candidates

Channel	background	Expected signal	Observed
au o 1h	0.04 ± 0.01	0.52 ± 0.10	3
au ightarrow 3h	0.17 ± 0.03	0.73 ± 0.14	1
$ au ightarrow \mu$	0.004 ± 0.001	0.61 ± 0.12	1
au ightarrow e	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.25 ± 0.05	2.64 ± 0.53	5

P-value = $1.1 \cdot 10^{-7}$

Exclusion of background-only hypothesis: 5.1 σ

Measurement of Δm_{23}^2

$$N_{
u_ au} \propto \int \phi(E) \sin^2\left(rac{\Delta m_{32}^2 L}{4E}
ight) \epsilon(E) \sigma(E) dE \ \propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) rac{\sigma(E)}{E^2} dE$$

$$\left(\frac{L}{\langle E \rangle}\right)_{opera} \sim 43 \text{ km/GeV}$$

$$\left(\frac{L}{\langle E \rangle}\right)_{PEAK} \sim 500 \text{ km/GeV}$$

 Δm_{23}^2 dependence

90% C.L. intervals by Feldman & Cousins method

 $\Delta m_{23}^2 = [2.0 - 4.7] \, 10^{-3} \, \text{eV}^2$ (assuming full mixing)

Sterile neutrinos

Appearance probability be modified by one extra (sterile) state (3+1 scheme)

[JHEP 074 (2015) 0315]

First limits on $\left|U_{\mu 4}\right|^2 |U_{\tau 4}|^2$ from direct measurement of $oldsymbol{
u_{ au}}$

Preliminary OPERA updated results (5 $u_{ au}$ events)

Full analysis with GLOBES (matter effects, Δm_{21}^2 included, profiled out on Δm_{31}^2)

Old result from 2008+2009 data sample (30% of total)

E<20 GeV

$v_{\rm e}$ candidates	19	4
background	19.8±2.8	4.6

Compatible with expectation from intrinsic ν_e component in the CNGS ν_{μ} beam: 0.9%

We may put rough limits to exclude mixing on θ_{14} with a 2 flavour model

** Very approximate analysis, see e.g. A.Palazzo, PRD 91, 91301(R) (2015)

NEW study on-going : v_e candidates selection by emulsion analysis on the full data sample

OPERA v_e candidates (preliminary plot)

	E<	<u> 20 GeV</u>
$v_{\rm e}$ candidates (30% data)	19	4
$v_{\rm e}$ candidates (all data)	52	9

OPERA data / MC comparison (ED level)

Good confirmation of v_e events from Electronic Detectors (via Boost-Decision-Tree)

NUFact15 Rio de Janeiro C.Sirignano 29

Conclusions

- 1.8 x 10²⁰ pot by CNGS from 2008-12 (80% of design).
- Analysis of an extended data sample. Improved background evaluation
- 5 ν_{τ} candidates so far with a 0.25 event background
- No oscillation hypothesis excluded at **5.1** σ . \rightarrow discovery of ν_{τ} appearance in the CNGS beam
- Search for anomalies in $\nu_{\mu} \to \nu_{e}$ and $\nu_{\mu} \to \nu_{\tau}$ at a peculiar L/E. First limits on $\left|U_{\mu 4}\right|^{2} |U_{\tau 4}|^{2}$ from direct measurement of ν_{τ} .

BACKUP

- BACKGROUND

First v_{τ} candidate

			Event: 9234119	599, 22 Aug 2009	9, 19:27 (UTC), YZ p	rojection	 Selected brick
		B B B B B B F	1 B B B B B	8 8 8 8 8 8	8 8 8 8 8 8 8	8	 Brick in cell
	F						■ Empty cell
~	-						 Fake brick
Rows (side view)	250						Row manipulation
e e							
<u>(s</u>	-		├ ╂╂╂ <mark>┺╁</mark>				
S.	200		HHH				
é							
	-						
	F						
	150				4 4 4 4 4		•
	-800	-700		-600	-500	-400	-300
			/				
		<i><</i>					

Event: 9234119599, 22 Aug 2009, 19:27 (UTC), XZ projection

VARIABLE	AVERAGE
kink (mrad)	41 ± 2
decay length (μm)	1335 ± 35
P daughter (GeV/c)	12 ⁺⁶ -3
Pt daughter (MeV/c)	470 +230 ₋₁₂₀
missing Pt (MeV/c)	570 +320 ₋₁₇₀

 ϕ (deg)

 τ -> ρ ($\pi^ \pi^0$) $ν_{\tau}$

Ref: Phys.Lett.B691:138-145 (2010)

NUFact15 Rio de Janeiro

C.Sirignano

32

 173 ± 2

Kinematical cuts for a candidate event

Second v_{τ} candidate

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation search

No muon detected at the primary vertex:

track other than τ lepton candidate not compatible with muon hypothesis based on momentum – range correlation

Ref: JHEP 11 (2013) 036

Event kinematics	Cut	Value	Error
Phi (Tau - Hadron) [degree]	>90	167.8	± 1.1
average kink angle [mrad]	< 500	87.4	± 1.5
Total momentum at 2ry vtx [GeV/c]	> 3.0	8.4	± 1.7
Min Invariant mass [GeV/c²]	0.5 < < 2.0	0.96	± 0.13
Invariant mass [GeV/c²]	0.5 < < 2.0	0.80	± 0.12
Transverse Momentum at 1ry vtx [GeV/c]	< 1.0	0.31	± 0.11

Third v_{τ} candidate

1000

VARIABLE	AVERAGE
kink (mrad)	245 ± 5
decay length (μm)	376 ± 10
P daughter (GeV/c)	2.8 ± 0.2
Pt daughter (MeV/c)	690 ±50
φ (deg)	154.5 ± 1.5

Event: 12123032048, 2 May 2012, 10:12 (UTC), XZ projection

Selected brick Brick in cell

Empty cell Fake brick Row manipulation Second predicted brick

PHYSICAL REVIEW D 89 (2014) 051102(R)

Event: 12254000036, 9 Sep 2012, 22:00 (UTC), XZ projection

fourth v_{τ} candidate

ECC scanning results

fourth v_{τ} candidate

~8.4mm

	Values	Selection
P daughter (GeV/c)	6.0 ^{+2.2}	> 2
Kink P _t (GeV/c)	0.82 +0.30 -0.16	> 0.6
P _t at 1ry (GeV/c)	$0.55^{+0.30}_{-0.20}$	< 1.0
Phi (degrees)	166 ⁺² ₋₃₁	> 90
Kink angle (mrad)	137 ± 4	> 20
Decay position (μm)	1090 ± 30	< 2600

Kink daughter track follow down

Found in the CS of the most downstream brick $P = 6.0^{+2.0}_{-1.2} \text{ GeV/c}$ Range/momentum \rightarrow hadron

$$D = \frac{L}{R_{lead}(p)} \frac{\rho_{average}}{\rho_{lead}} = 0.15$$

Fourth v_{τ} candidate

Validation with the CNGS charm events sample

Test for: reconstruction efficiencies, description of kinematical variables, charm background.

54 ± 4 expected ↔ 50 observed

20

Muon momentum (GeV/c)

150 200

Impact parameter (µm)

Improvements On The Background Rejection

Large angle track detection

Undetected soft and large angle muons are the source of charm background Detection of particles and nuclear fragments in hadronic interactions

JINST 9 (2014) P12017

Large angle μ scattering

CNGS v_{μ} CC muons on Lead 1< p_{μ} <15 GeV/c

Main background in the $\tau \rightarrow \mu$ decay channel when using upper limits in the past

LAS background estimation

$$(1.2 \pm 0.1) \times 10^{-7} / \nu_{\mu}^{CC}$$

well below the values considered so far

IEEE Transactions on Nuclear Science

Large angle μ scattering

New estimate based on GEANT4
- Simulation modified by introducing form factors (FF) for Lead
(Saxon-Woods parameterization)

$$\rho_{SW}(r) = \rho_0 \left(1 + e^{\frac{r-b}{a}} \right)^{-1}$$

IEEE Transactions on Nuclear Science

MC predictions compared to available data

7.3 GeV/c muons on Copper

Background Studies: Hadronic Interactions

Comparison of large data sample (π - beam test at CERN) with Fluka simulation check the agreement and estimate the systematic uncertainty

Track length analysed in the brick:

- 2 GeV/c : 8.5 m

- 4 GeV/c : 12.6 m

- 10 GeV/c : 38.5 m

Black : π - beam data

Red: MC (FLUKA) simulation

PTEP 9 (2014) 093C01

Nuclear Fragments Emission Probability

Highly ionizing fragments

Additional background reduction

Black: experimental data

Red : simulated data ($\beta = p/E = 0.7$)

PTEP 9 (2014) 093C01

Hadronic background: π test beams

Nuclear fragments: a smoking gun for the occurrence of an π interaction instead of a decay.

Hadronic background rate per located event: $\tau \rightarrow (3)h = (1.5)3.09 \ 10^{-5}$ Beam Momentum (GeV/c)